Exercise 13

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

$$
f(x)=3 x^{2}-5 x-1
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=3\left(x^{2}-\frac{5}{3} x-\frac{1}{3}\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-\frac{5}{3}$, which means $B=-\frac{5}{6}$ and $B^{2}=\frac{25}{36}$. Add and subtract $\frac{25}{36}$ on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =3\left[\left(x^{2}-\frac{5}{3} x+\frac{25}{36}\right)-\frac{1}{3}-\frac{25}{36}\right] \\
& =3\left[\left(x+\left(-\frac{5}{6}\right)\right)^{2}-\frac{37}{36}\right] \\
& =3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{37}{36}\right] \\
& =3\left(x-\frac{5}{6}\right)^{2}-\frac{37}{12}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(\frac{5}{6},-\frac{37}{12}\right)$.

